A protein methylesterase involved in bacterial sensing

(chemotaxis/S-adenosylmethionine/Salmonella typhimurium/Escherichia coli)

JEFFRY B. STOCK AND D. E. KOSHLAND, JR.

Department of Biochemistry, University of California, Berkeley, California 94720

Contributed by Daniel E. Koshland, Jr., May 15, 1978

A protein methylesterase has been identified in soluble extracts of Salmonella typhimurium and Escherichia coli. This enzyme catalyzes the hydrolysis of γ -glutamyl methyl ester residues from membrane-bound 60,000-molecular weight proteins that are essential for chemotaxis. Analyses of methylesterase activity in a variety of chemotactically defective strains suggest that the methylesterase is a product of the cheX gene in Salmonella and the cheB gene in E. coli. In addition, the cheT gene product in S. typhimurium seems to play a role in expression of methylesterase activity. Mutant strains lacking the protein methylesterase tumble incessantly in the absence of attractant gradients. This behavior is the converse of that shown by mutant strains defective in methyltransferase activity, which swim smoothly in the absence of repellent gradients. This finding indicates that reversible methylation acts as a control mechanism and that both a methyltransferase and a protein methylesterase are instrumental in bacterial sensing.

Methylation reactions are extensive in biological systems. They are known to be important in the modification of nucleic acids, proteins, carbohydrates, and lipids (1). In essentially all of these reactions the modification remains for the lifetime of the modified molecule. Irreversible modification is of course known in peptide activation, as in processing to convert a zymogen to a zymase or a prohormone to a hormone (2). On the other hand, covalent modification is usually reversible in reactions such as phosphorylation, adenylylation, and ADP-ribosylation. Until recently, no catalyzed reversible attachment and removal of methyl groups has been observed, but from recent studies on bacterial chemotaxis, such a reversible protein methylation appears likely.

Tactic responses of the bacteria Escherichia coli and Salmonella typhimurium to chemicals in their environment are mediated by a relatively simple sensory response system. Receptor proteins at the cell surface detect trace levels of extracellular chemicals (3). Migration of bacteria towards favorable environmental conditions is effected by control of tumbling frequency (4, 5), which is in turn generated by reversal of flagellar rotation (6, 7). From genetic studies it has been shown that at least nine polypeptides are involved in the signal transduction process (8), and, in addition, there are at least two intrinsic membrane proteins of 60,000 molecular weight that function in conjunction with the receptor proteins (9–11).

So far the function of only one of the nine polypeptides has been identified: the *cheR* gene product is involved in the expression of a methyltransferase that catalyzes the transfer of methyl groups from S-adenosylmethionine to the 60,000-molecular weight membrane proteins (12). The products of the reaction are γ -glutamyl methyl ester residues in the membrane proteins, and S-adenosylhomocysteine (13, 14). Mutant strains lacking either the methyltransferase or the 60,000-molecular weight membrane proteins (12, 15), and wild-type cells defi-

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. §1734 solely to indicate this fact.

cient in methionine (16, 17) or S-adenosylmethionine (18, 19) are defective in chemotaxis. Furthermore, levels of methylation of the membrane proteins change rapidly when cells are exposed to chemical stimuli: attractants cause increases in methylation and repellents cause decreases (20).

Protein carboxyl methylation has also recently been found in mammalian systems (21) and has been associated with leukocyte chemotaxis (22).

In this paper, we describe the discovery of a protein methylesterase that functions in chemotaxis and the relationship of this enzyme to chemotactically defective strains of *E. coli* and *Salmonella*.

MATERIALS AND METHODS

S-Adenosyl-L-[methyl-³H]methionine (12.6 Ci/mmol) was obtained from Amersham. S-Adenosyl-L-methionine was obtained from Sigma.

Except for ST324 and ST325, all the S. typhimurium strains used in this study have been described previously (23) or were obtained from B. A. D. Stocker (SL1509, SL1507, SL2516, SL4041). ST324 and ST325 were derived from S. typhimurium ST314 by A. DeFranco. E. coli strains were obtained from J. S. Parkinson (University of Utah).

Cells were grown in nutrient broth (Difco) containing 5 g of NaCl per liter. They were harvested during exponential growth at a cell density of approximately 1 g wet weight of cells per liter of culture and collected by centrifugation for 20 min at 8000 × g. Cells were resuspended in 1–3 vol of 0.1 M sodium phosphate/1.0 mM EDTA, pH 7.1, and disrupted by sonication with a model W220F sonicator (Heat Systems-Ultrasonics, Inc.). Intact cells and large cell fragments were then removed by centrifugation at $12,000 \times g$ for 20 min. Extracts were either assayed directly for methylesterase activity or separated into soluble and membrane fractions by centrifugation at 100,000 × g for 2 hr in a Beckman model L ultracentrifuge. The resulting membrane pellets were resuspended in sodium phosphate/EDTA buffer to a final concentration of approximately 25 mg of membrane protein per ml of suspension. The supernatant material contained from 15 to 50 mg of protein per

Radioactive-methylated membranes were prepared to be used as substrates in the protein methylesterase assay. A strain deficient in protein methyltransferase activity (ST1038) (12) was used to ensure the presence of unmodified carboxyl groups in the initial membrane preparation. These preparations were then treated with tritium-labeled S-adenosylmethionine and a soluble cytoplasmic extract of wild-type strains that contained methyltransferase activity (12). The final concentrations of membrane and soluble proteins were 2 and 5 mg/ml, respectively. After a 60-min incubation at 30° the methylated membranes were removed by centrifugation at $100,000 \times g$, washed three times by repeated centrifugation and resuspension in sodium phosphate-EDTA buffer, and finally resuspended

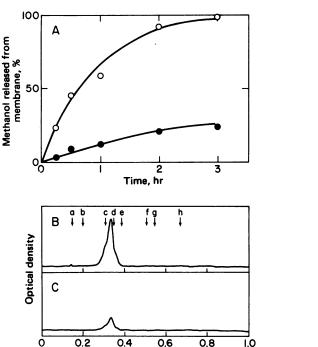


FIG. 1. Hydrolysis of methylated 60,000-dalton proteins catalyzed by soluble extract of S. typhimurium ST1. Methylated ST1038 membranes containing 135 pmol (247,000 cpm) of carboxyl [3H]methyl groups were incubated at 30° in the presence (O) or absence (•) of 31 mg of S. typhimurium ST1 soluble extract protein in a final volume of 1.0 ml of 0.1 M sodium phosphate/1.0 mM EDTA, pH 7.1. Aliquots were removed from each suspension at the indicated times and analyzed for methanol released by the ethanol precipitation assay as described in Materials and Methods (A) or boiled in 2% sodium dodecyl sulfate for 5 min and analyzed by sodium dodecyl sulfate/ polyacrylamide gel electrophoresis as described previously (12). The stained gels were treated with 2,5-diphenyloxazole (PPO) and autoradiographed according to the method of Bonner and Laskey (25). The autoradiogram was scanned using white light in a Transidyne RFT scanning densitometer set in the linear mode. The arrows in B indicate the positions of the following molecular weight marker proteins: a, β -galactosidase (116,000); b, phosphorylase (94,000); c, bovine serum albumin (68,000); d, catalase (60,000); e, glutamate dehydrogenase (56,000); f, alcohol dehydrogenase (41,000); g, glyceraldehyde-3-phosphate dehydrogenase (36,000); and h, S. typhimurium histidine-binding protein (25,000). In B are shown results obtained with membranes incubated in buffer for 0-3 hr or in soluble extract at time zero. In C are results with membranes incubated in soluble extract for 3 hr. Membranes incubated in soluble extract for shorter times gave intermediate results (data not shown).

Relative mobility

in the same buffer to a protein concentration of approximately 2 mg/ml.

Sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the methylated membranes showed that the only proteins labeled comigrated with the 60,000-molecular weight proteins previously identified with chemotaxis. When the same incubation was carried out including tritiated S-adenosylmethionine but utilizing soluble extract from ST1038 (the methyltransferase-deficient mutant), no labeling of this protein fraction was observed.

Methylesterase activity was measured by using methylated membranes as substrate. The membranes were incubated with cell extracts at 30°, and at various intervals 0.1-ml aliquots were added to 0.9 ml of cold ethanol. The resulting precipitate was removed by centrifugation for 30 sec in a Beckman Microfuge and the supernatant was assayed for radioactivity. It was shown

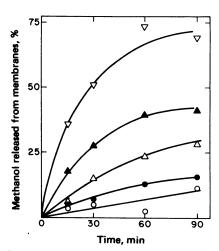


FIG. 2. Methylesterase activity as a function of concentration of cell extract protein. Methylesterase was assayed with various amounts of S. typhimurium ST1 extract. The final levels of soluble protein in mg per ml of reaction mixture were: ∇ , 40.7; \triangle , 16.3; \triangle , 8.1; \bigcirc , 4.1; and O, 0.0. Each reaction mixture initially contained 18.2 pmol of carboxyl [³H]methyl groups in 0.22 mg of membrane protein in a volume of 0.6 ml.

that the radiolabel introduced into the protein fraction of the membranes could be entirely released by incubation for one hour at 30° in 0.1 M NaOH and that it appeared entirely as methanol.

Radioactivity was determined by liquid scintillation spectrometry in a Packard Tri-Carb spectrometer with Handifluor scintillation fluid. Protein was determined by the method of Lowry *et al.* (24), modified by first precipitating the protein in 7.5% trichloroacetic acid.

RESULTS

Demonstration of Demethylation of Membrane Protein. Protein methylesterase activity was determined by incubating extract from wild-type cells with specifically labeled membranes. As described above, the membranes were methylated in the γ -glutamyl residue of 60,000-molecular weight chemotaxis proteins by the methyltransferase enzyme. When these labeled membranes are incubated with extracts of wild-type S. typhimurium cells, the label was released as tritiated methanol within a few hours (Fig. 1). The appearance of radioactive methanol was shown to be concomitast with the decrease of tritium label in the 60,000-molecular weight membrane proteins. Little hydrolysis occurred in controls in which the methylated membranes were incubated in buffer or in the presence of boiled extract.

The rate of methyl ester hydrolysis was found to be first order in both the concentration of methylated membranes (in the range from 0.04 to 2 mg of protein per ml) and in the concentration of the cell-free extract (Fig. 2.)

The methylesterase activity was due to a soluble component of the extract, as shown by the fact that there was no significant loss of activity when membranes were removed from extracts by centrifugation at $100,000 \times g$ for two hours. Moreover, no low molecular weight factor appeared to be required because extensive dialysis did not affect the ability of extracts to catalyze the methylesterase reaction. These results showed that the methylesterase activity was caused by a cytoplasmic component of wild-type S. typhimurium cells. The activity was found to be heat labile and unaffected by dialysis, properties of a protein molecule.

Table 1. Methylesterase activities in nonchemotactic (che⁻) strains of Salmonella typhimurium

	Strain	Relevant genotype	Methylesterase activity,* %	Nongradient swimming behavior	
	ST1	Wild type	100	Random	
	ST1002	cheP-	60	Smooth	
	ST1001	cheQ-	57	Smooth	
	ST1038	cheR-	45	Smooth	
	ST108	$cheS^-$	125	Smooth	
	ST171	$cheT^-$	1	Tumbly	
	ST155	$cheU^-$	66	Random	
	SL2516	$cheV^-$	74	Smooth	
	ST1024	cheW-	87	Smooth	
	SL4041	$cheX^-$	1	Tumbly	

^{*} Methylesterase activity was measured as described in Materials and Methods. The soluble extract of S. typhimurium ST1 catalyzed hydrolysis of 3.6% of the carboxyl methyl groups in specifically methylated ST1038 membranes per mg of soluble extract protein per ml per hr.

† Swimming behavior in the absence of attractant or repellent gradients. "Random" corresponds to alternating periods of smooth

swimming and tumbling.

Identification of the Protein Methylesterase with a Gene.

The nine classes of motile but generally nonchemotactic mutant strains previously associated with chemotaxis in Salmonella (8) were each tested in the methylesterase assay. Soluble extracts of each of the strains were incubated with tritium-labeled membranes, and the radioactivity released was evaluated as shown in Table 1. Of the strains with mutations in the nine chemotaxis genes, only the $cheT^-$ and $cheX^-$ strains lacked methylesterase activity.

Double and triple mutants were also examined for methylesterase activity. The extract of a mutant defective in *cheX*, *cheQ*, and *cheT* did not catalyze demethylation of the 60,000-dalton methylated membrane proteins, but, on the other hand, a mutant strain defective in both *cheQ* and *cheT* had significant activity (Table 2). Thus, in *Salmonella* all the *cheX*-strains were methylesterase deficient, whereas *cheT*- strains gave mixed results. All other strains had normal or essentially normal amounts of the methylesterase activity.

In E. coli, eight genes for general nonchemotaxis have been identified (11, 26, 27); strains defective in each of these genes were therefore assayed for methylesterase activity. Only the cheB- mutant lacked activity (Table 3). This is a particularly interesting result because genetic studies of DeFranco et al.* have indicated that the cheX gene of Salmonella corresponds to the cheB gene of E. coli. Taken together, these results strongly indicate that the gene product of the cheX gene in Salmonella and the product of the corresponding cheB gene in E. coli are needed for expression of methylesterase activity, and the genes each probably code for a protein involved in this process.

The results concerning the $cheT^-$ gene product are not as definitive. The corresponding gene in E.coli is cheZ, and $cheZ^-$ strains have methylesterase activity, while some $cheT^-$ strains of Salmonella have no activity. In studies of genetic complementation, Parkinson (27) has observed poor complementation between certain $cheB^-$ and $cheZ^-E.coli$ strains. This led him to hypothesize (11) that these gene products interact in some way. The mixed results reported here with the cheT gene product in Salmonella and the cheZ gene product in E.coli would be consistent with such a hypothesis.

Table 2. Methylesterase activities in various Escherichia coli and Salmonella typhimurium strains

Strain	Relevant genotype	Methylesterase activity,* %	
S. typhimurium			
ST1	Wild type	100	
SL1509	flaC-	8	
SL1507	ΔflaC-motC	1	
ST324	$cheQ^-$, $cheT^-$	47	
ST325	$cheX^-$, $cheQ^-$, $cheT^-$	3	
E. coli			
RP437	Wild type	100	
RP4368	tsr-	317	
RP4324	tar-	277	
RP4372	tar-, tsr-	187	

^{*} Wild-type activities are those shown in Tables 1 and 3.

Tests for Methylesterase Activity in Other Mutant Strains. Extracts derived from fla - Salmonella strains did not catalyze demethylation of the methylated 60,000-dalton membrane proteins (cf. Table 2). S. typhimurium mutant strains unable to synthesize complete flagellar basal structures (fla - mutants) are deficient in methyltransferase activity and also lack the 60,000-dalton membrane proteins (S. Clarke, K. T. Sparrow, and D. E. Koshland, Jr., unpublished results). Because che and fla genes appear to be coordinately expressed, the absence of methylesterase activity in extracts from fla - strains supports the conclusion that the methylesterase is a che gene product.

In E. coli two genes, designated tar and tsr, code for 60,000-dalton methylated membrane proteins (9-11). When mutant strains defective in these genes were assayed for methylesterase activity, elevated levels were obtained (Table 2). In order to form a complex with its substrates, the methylesterase must interact with membranes. It is therefore possible that the activity detected in wild-type cell extracts represents only a fraction of the total methylesterase level within the cell, the remainder being bound to 60,000-dalton proteins within the membrane. This would explain the relatively high levels of methylesterase activity found in cells lacking a full complement of these membrane proteins. In this context, it should be noted that the cheB gene product in E. coli has been shown to be located in both membrane and soluble cell fractions

Characterization of Methylesterase. The soluble fraction of wild type S. typhimurium was fractionated by Sephadex G-100 column chromatography to isolate the methylesterase. The activity was well separated from the bulk of the protein,

Table 3. Methylesterase activities in nonchemotactic (che⁻) strains of Escherichia coli

Strain	Relevant genotype	Methylesterase activity,* %	Nongradient swimming behavior
RP437	Wild type	100	Random
RP4303	cheA-	102	Smooth
RP4310	$cheB^-$	8	Tumbly
RP4792	$cheD^-$	64	Smooth
RP4305	$cheW^-$	64	Smooth
RP4306	cheX-	55	Smooth
RP4315	$cheY^-$	59	Smooth
RP4318	$cheZ^-$	92	Tumbly

^{*} The wild-type (RP437) extract catalyzed hydrolysis of 1.2% of the carboxyl methyl groups in methylated S. typhimurium ST1038 membranes per mg of extract protein per ml per hr.

^{*} A. L. DeFranco, J. S. Parkinson, and D. E. Koshland, Jr., unpublished results.

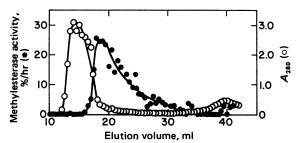


FIG. 3. Characterization of methylesterase by Sephadex G-100 column chromatography. An S. typhimurium ST1 soluble extract containing 25 mg of protein in 0.5 ml of 0.1 M sodium phosphate/1.0 mM EDTA buffer, pH 7.1, was chromatographed on a 1.2 × 47 cm Sephadex G-100 column equilibrated with the same buffer. Fractions (0.5 ml) were collected and assayed for methylesterase activity (release of methanol from membranes) as described in Materials and Methods (•); the absorbance at 280 nm of a 1:10 diluted aliquot of each fraction was also measured (O).

most of which eluted in the void volume (Fig. 3). The methylesterase elution profile was compared to that of proteins of known molecular weight to obtain an estimate of the molecular weight of the methylesterase; the result was a value of approximately 100,000. Because Silverman and Simon (26) have estimated that the *cheB* gene product has a polypeptide molecular weight of approximately 38,000, it seems likely that the methylesterase is an oligomer.

DISCUSSION

The results described above establish that one of the proteins of the chemotactic system in S. typhimurium and E. coli catalyzes the demethylation of the methylated 60,000-dalton membrane proteins involved in the chemotactic response. Of the nine chemotaxis genes in Salmonella, two have now been associated with enzymatic activities. Evidence has previously been presented which indicates that the cheR gene product functions as a methyltransferase (12), and, from the work described here, it seems likely that the cheX gene product acts as a protein methylesterase. In E. coli the situation appears to be completely analogous: the E. coli cheX gene is responsible for the expression of methyltransferase, * and the E. coli cheB gene functions in expression of methylesterase activity.

The cheT gene product in S. typhimurium and the corresponding cheZ gene product in E. coli seem in some way involved in methylesterase function. This is suggested by the finding that at least one cheT strain, ST171, is deficient in methylesterase activity. Furthermore, genetic studies in E. coli indicate that the cheB and cheZ gene products interact in vivo (11). Similar observations have been made with the corresponding genes, cheX and cheT, in Salmonella.* From these results we tentatively conclude that the cheX gene product is a protein methylesterase, and that this enzyme, in turn, interacts in some way with the cheT gene product.

It is interesting to compare the properties of the two classes of *che* mutants that are now known to be involved in methylation. Methyltransferase-deficient mutants (*cheR*⁻ in *Salmonella* and *cheX*⁻ in *E. coli*) are smooth swimming in the absence of a gradient; conversely, the methylesterase-deficient mutants (*cheX*⁻ in *Salmonella* and *cheB*⁻ in *E. coli*) are constantly tumbly under these conditions (8, 11). Increases in attractant concentrations cause a transient smooth swimming response in methylesterase-deficient mutants (11, 29), and increases in repellent concentrations cause a tumbling response in methyltransferase-deficient mutants (12). These results support the possibility that methylation is important in control of the time constants of response and adaptation (12, 19).

Reversible covalent protein modification reactions play a central role in the regulation of a variety of cellular processes (30-32). Enzymes that catalyze the transfer of methyl groups from S-adenosylmethionine to carboxyl groups on proteins have been found in every organism and tissue that has been examined (33). However, no protein methylesterase activities have been reported in these systems. This is not surprising in view of the paucity of information concerning the nature of the in vivo protein substrates of eukaryotic methyltransferases. Moreover, protein carboxyl methyl groups are often labile, nonenzymatically, even at neutral pH (34, 35), and the resulting high nonspecific background of spontaneous methyl ester hydrolysis would make it difficult to detect specific protein methylesterase activities. Methyltransferases have now been shown by Axelrod and coworkers (21, 36) to be involved in neural cell function, and preliminary evidence indicates that proteins modified in this way function in leukocyte chemotaxis (22). It seems likely that methylation and demethylation of protein carboxyl groups plays a role in regulation analogous to that of phosphorylation and dephosphorylation. If so, the demonstration of a protein methylesterase in the bacterial system may be a forerunner for the finding of similar enzymes in eukaryotic species.

We acknowledge Dr. J. S. Parkinson for providing us with mutant strains of *E. coli*, and Dr. S. Clarke for his discussions and experimental contributions. We also are grateful for financial support from the National Institutes of Health (AM-09765) and the Cystic Fibrosis Foundation.

- Salvatore, F., Borek, E., Zappia, V., Williams-Ashman, H. G. & Schlenk, F., eds. (1977) The Biochemistry of Adenosylmethtonine (Columbia Univ. Press, New York).
- Neurath, H. & Walsh, K. A. (1978) in Regulatory Proteolytic Enzymes and Their Inhibitors, FEBS 11th Meeting, Symposium A6, ed. Magnusson, S. (Pergamon, New York), Vol. 47, pp. 1-14.
- 3. Adler, J. (1969) Science 166, 1588-1597.
- 4. Berg, H. C. & Brown, D. A. (1972) Nature 239, 500-504.
- Macnab, R. M. & Koshland, D. E., Jr. (1972) Proc. Natl. Acad. Sci. USA 69, 2509-2512.
- 6. Silverman, M. & Simon, M. (1974) Nature 249, 73-74.
- Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W.-W. & Adler, J. (1974) Nature 249, 74-77.
- Warrick, H. M., Taylor, B. L. & Koshland, D. E., Jr. (1977) J. Bacteriol. 130, 223-231.
- Kort, E. N., Goy, M. F., Larsen, S. H. & Adler, J. (1975) Proc. Natl. Acad. Sci. USA 72, 3939–3943.
- Silverman, M. & Simon, M. (1977) Proc. Natl. Acad. Sci. USA 74, 3317–3321.
- 11. Parkinson, J. S. (1977) Annu. Rev. Genet. 11, 397-414.
- Springer, W. R. & Koshland, D. E., Jr. (1977) Proc. Natl. Acad. Sci. USA 74, 533-537.
- Van Der Werf, P. & Koshland, D. E., Jr. (1977) J. Biol. Chem. 252, 397-405.
- Kleene, S. J., Toews, M. L. & Adler, J. (1977) J. Biol. Chem. 252, 3214–3218.
- Springer, M. S., Goy, M. F. & Adler, J. (1977) Proc. Natl. Acad. Sct. USA 74, 3312–3316.
- 16. Adler, J. & Dahl, M. (1967) J. Gen. Microbiol. 46, 161-173.
- Aswad, D. & Koshland, D. E., Jr. (1974) J. Bacteriol. 118, 640-645.
- 18. Armstrong, J. B. (1972) Can. J. Microbiol. 18, 1695-1701.
- Aswad, D. & Koshland, D. E., Jr. (1975) J. Mol. Biol. 97, 207– 223.
- Goy, M. F., Springer, M. S. & Adler, J. (1977) Proc. Natl. Acad. Sci. USA 74, 5964-5968.
- Diliberto, E. J., Jr. & Axelrod, J. (1976) J. Neurochem. 26, 1159-1165.
- O'Dea, R. F., Viveros, O. H., Axelrod, J., Aswanikumar, S., Schiffmann, E. & Corcoran, B. A. (1978) Nature 272, 462– 464.

- 23. Aswad, D. & Koshland, D. E., Jr. (1975) J. Mol. Biol. 97, 225-
- Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) J. Biol. Chem. 193, 265-275.
- Bonner, W. M. & Laskey, R. A. (1974) Eur. J. Biochem. 46, 83-88.
- Silverman, M. & Simon, M. (1977) J. Bacteriol. 130, 1317– 1325.
- 27. Parkinson, J. S. (1976) J. Bacteriol. 126, 758-770.
- Ridgway, H. F., Silverman, M. & Simon, M. (1977) J. Bacteriol. 132, 657-665.
- Rubik, B. A. & Koshland, D. E., Jr. (1978) Proc. Natl. Acad. Sci. USA 75, 2820-2824.

- Hujing, F. & Lee, E. Y. C., eds. (1973) Protein Phosphorylation in Control Mechanisms (Academic, New York).
- Adler, S. P., Mangum, J. H., Magni, G. & Stadtman, E. R. (1974) in Third International Symposium on Metabolic Interconversion of Enzymes, eds. Fisher, E. H., Krebs, E. G. & Stadtman, E. R. (Springer-Verlag, New York), pp. 221-233.
- 32. Hayaishi, O. (1976) Trends in Biochem. Sci. 1, 9-10.
- 33. Paik, W. K. & Kim, S. (1971) Science 174, 114-119.
- 34. Kim, S. & Paik, W. K. (1976) Experientia 32, 982-984.
- 35. Axelrod, J. & Daly, J. (1965) Science 150, 892-893.
- 36. Diliberto, E. J., Jr., Axelrod, J. & Chaiken, I. M. (1976) Biochem. Biophys. Res. Commun. 73, 1063-1067.